ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. D. Galambos, D. T. Blackfield, Y-K. Martin Peng, R. Lowell Reid, Dennis J. Strickler, E. C. Selcow
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 93-114
Technical Paper | Fusion Reactor | doi.org/10.13182/FST88-A25087
Articles are hosted by Taylor and Francis Online.
The new Tokamak Systems Code, used to investigate compact ignition tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and in determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma energy confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee physics guidance of B2a/q* and Ip > 10 MA, the Ignifed and baseline Inconel devices have minimum sizes of 1.2 and 1.25 m and toroidal fields of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.