ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
John P. Holdren, D. H. Berwald, Robert J. Budnitz, Jimmy G. Crocker, J. G. Delene, Ron D. Endicott, Mujid S. Kazimi, R. A. Krakowski, B. Grant Logan, Kenneth R. Schultz
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 7-56
Overview | doi.org/10.13182/FST88-A25084
Articles are hosted by Taylor and Francis Online.
The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) summarizes its recent assessment of magnetic fusion energy's (MFE's) prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the time frame of the year 2015 and beyond. Accordingly, ESECOM has given particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compared those fusion cases with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models, to permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that MFE systems have the potential to achieve costs of electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. This conclusion is based on (a) assumptions about plasma performance and engineering characteristics that are optimistic but defensible extrapolations from current experience, and (b) consistent application of an elaborate set of engineering/economic and safety/environment models to a range of fusion and fission reference cases, with the known characteristics of fission light water reactors as a benchmark. The most important advantages of fusion with respect to safety and environment are 1. high demonstrability of adequate public protection from reactor accidents, based on passive rather than on active safety systems 2. substantial amelioration of the radioactive waste problem by eliminating or greatly reducing the high-level waste category that requires deep geologic disposal 3. diminution of some important links with nuclear weaponry. These advantages are potentially large enough to make a difference in public acceptability of MFE, as compared to fission. Neither the economic competitiveness nor the environmental safety advantages of fusion will materialize automatically. Economic competitiveness depends on attaining plasma and engineering performances that are not yet assured. Achieving the potential environmental and safety advantages depends in large measure on designs specifically tailored to do so and on the use of low-activation materials whose practicality for fusion applications remains to be demonstrated. It is essential that sufficient research and development be devoted early to determining which of a variety of confinement schemes, structural materials, blanket types, and fuel cycle/energy conversion combinations can actually be made practical.