ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Johnnie B. Cannon, Clay E. Easterly, Wallace Davis, Jr., Jack S. Watson
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 341-353
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST87-A25067
Articles are hosted by Taylor and Francis Online.
Radioactive and nonradioactive effluents will be released routinely during normal operation of near-term commercial fusion power reactors. Nonradioactive effluents will be essentially the same as those released at conventional steam-electric power plants. Radioactive effluents will consist of activated corrosion products and tritium. Most radioactive releases will originate from liquid-waste processing systems and from ventilation systems of various buildings where radioactivity may become airborne. These effluents will have some potential for environmental impact; however, the significance of the impact will depend in part on the concentration and release rate of the effluent. The type of reactor design (e.g., tokamak, mirror, etc.) has minimal influence on activation product releases. Activation products released are influenced primarily by the materials chosen for structural components, and the quantities released are influenced primarily by the coolant choice. The most likely choices for the coolant are water and helium. Preliminary release estimates for water- and helium-cooled fusion reactors are found to be similar to those of fission reactors with the same coolant and of comparable size and structural materials. Data are insufficient to do more than speculate about normal releases from liquid-metal-cooled reactors.