ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. W. Kugel, R. Budny, R. Fonck, R. Goldston, B. Grek, R. Kaita, S. Kaye, R. J. Knize, D. Manos, R. McCann, D. McCune, K. McGuire, D. K. Owens, D. Post, G. Schmidt, M. Ulrickson
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 145-152
Technical Paper | Divertor System | doi.org/10.13182/FST87-A25058
Articles are hosted by Taylor and Francis Online.
Power transport to the Poloidal Divert or Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50% of the total plasma heating power. The measured peak front face midplane temperature was 1500°C, corresponding to a peak surface power density of 3 kW/cm2. This power density implies an effective parallel power flow of 54 kW/cm2 in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements. Symmetric and asymmetric thermal loads were observed. The asymmetric heat loads were predominantly skewed toward the respective ion drift directions for both co- and counterinjected beams. The results of transport calculations are consistent with the direction and magnitude of the observed asymmetries.