ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Bechtel-led SIMCO awarded three-year WIPP contract extension
The Department of Energy has issued a three-year contract extension to Salado Isolation Mining Contractors (SIMCO), a single-purpose entity comprising Bechtel National and Los Alamos Technical Associates as a teaming contractor, for the continued management and operations of the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-generated transuranic waste in southeastern New Mexico.
Ge-Ping Yu
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 137-144
Technical Paper | Materials Engineering | doi.org/10.13182/FST87-A25057
Articles are hosted by Taylor and Francis Online.
An analysis based on available materials property data has been performed to compare the inelastic response of first-wall structural materials. The first wall is assumed to be operated under the conditions of the pulse surface heat load, coolant pressure, and bombardment from energetic particles. An axisymmetric inelastic stress analysis calculates the long-term redistribution of the stress in a thin-walled plate element of a cylindrical module that is subjected to membrane load. The plate is free to expand but is constrained from bending. The redistribution is caused by inelastic deformation from irradiation creep and swelling. The present effort has concentrated on the performance of two candidate structural materials, namely, Type 316 stainless steel and HT-9 ferritic steel. The results obtained indicate a lower cyclic stress and a lower mean stress for the HT-9 ferritic steel than for stainless steel under the conditions of interest. Therefore HT-9 ferritic steel is quite attractive for future application of the fusion reactor first wall.