ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Nicolai, P. Börner
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 119-136
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25056
Articles are hosted by Taylor and Francis Online.
The main objective of this numerical study is to investigate how to minimize the tritium content in the first wall of a tokamak reactor. Mainly pulsed tokamak operation with 100-s cycle durations, 75-s duty times, and outgassing phases with durations τg between 500 and 3000 s is envisaged. These outgassing phases are started after every Np cycle (20 < Np < 70). For modeling, a multicode is applied that describes the surface and volume processes determining the tritium inventory in and the permeation through the first wall, the neutral gas background due to the recycling of the plasma, and the transport processes governing the parameters of a three-species burning plasma. The calculations show that control of the wall temperature Tw, determined by the heat transfer to the coolant and the radiation loading by the plasma, is decisive for the tritium buildup. Cooling is achieved by pressurized water or helium at a pressure pHe = 30 bar. The coolant channels are assumed to be composed of a corrugated steel sheet and the first wall, both connected in a panel-type construction. The main results are as follows: 1. In long outgassing phases (τg = 3000 s, Np = 70) at elevated temperatures (Tw = 300° C), the tritium content (˜20 g) after 1400 pulses is ˜2.5 times lower than in continuous irradiation with time-averaged intensity. 2. Shorter but more frequent outgassing phases, e.g., τg = 500 s, Np = 20, are less efficient. 3. Good outgassing efficiency at elevated temperatures is obtained at the expense of an enhanced tritium permeation to the outside. 4. An oxide layer, acting as an ideal diffusion barrier at the outside of the vessel, prevents permeation but effects a tritium content 30% higher than in case 1.