ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Nicolai, P. Börner
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 119-136
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25056
Articles are hosted by Taylor and Francis Online.
The main objective of this numerical study is to investigate how to minimize the tritium content in the first wall of a tokamak reactor. Mainly pulsed tokamak operation with 100-s cycle durations, 75-s duty times, and outgassing phases with durations τg between 500 and 3000 s is envisaged. These outgassing phases are started after every Np cycle (20 < Np < 70). For modeling, a multicode is applied that describes the surface and volume processes determining the tritium inventory in and the permeation through the first wall, the neutral gas background due to the recycling of the plasma, and the transport processes governing the parameters of a three-species burning plasma. The calculations show that control of the wall temperature Tw, determined by the heat transfer to the coolant and the radiation loading by the plasma, is decisive for the tritium buildup. Cooling is achieved by pressurized water or helium at a pressure pHe = 30 bar. The coolant channels are assumed to be composed of a corrugated steel sheet and the first wall, both connected in a panel-type construction. The main results are as follows: 1. In long outgassing phases (τg = 3000 s, Np = 70) at elevated temperatures (Tw = 300° C), the tritium content (˜20 g) after 1400 pulses is ˜2.5 times lower than in continuous irradiation with time-averaged intensity. 2. Shorter but more frequent outgassing phases, e.g., τg = 500 s, Np = 20, are less efficient. 3. Good outgassing efficiency at elevated temperatures is obtained at the expense of an enhanced tritium permeation to the outside. 4. An oxide layer, acting as an ideal diffusion barrier at the outside of the vessel, prevents permeation but effects a tritium content 30% higher than in case 1.