ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jan S. Brzosko, B. V. Robouch, Joanna Klobukowska
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 71-91
Technical Paper | Experimental Device | doi.org/10.13182/FST87-A25052
Articles are hosted by Taylor and Francis Online.
Experiments were carried out in the neutronoptimized mode of the plasma focus operation with small electrode diameters and condenser bank energies of 250, 390, and 490 kJ. The time sequence of the emitted radiation (neutron and gamma) was realized by the time-of-flight (TOF) method using an NE-102A plastic scintillator and silicon detectors viewing X rays from the plasma exclusively. The detectors were operated in the wide-energy window mode. Special attention was given to the interpretation of neutron TOF traces and their comparison with the absorption analysis and previously measured spectra by nuclear plates. The usefulness of gamma rays emitted by (n, n′γ) processes in electrodes is shown to be a precise indicator of the time evolution of the neutron emissivity. These conclusions are based on many shots that were statistically analyzed. Average values are discussed simultaneously with the results of representative single shots. It was found that two (sometimes more) neutron bursts are typical and, in each case, are accompanied by simultaneous hard X rays. The maxima of emissivities coincide with the dI/dt maximum. A theoretical analysis of the results reveals the existence of long time-confined streams of fast electrons and deuterons (effective energy ∼80 keV) with evidence of their slowing down.