ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
David H. Berwald, R. H. Whitley, J. K. Garner, R. J. Gromada, Thomas J. McCarville, Ralph W. Moir, Joseph D. Lee, Bernard R. Bandini, Fred J. Fulton, Clement P. C. Wong, Isaac Maya, C. G. Hoot, Kenneth R. Schultz, Lowell G. Miller, Joseph M. Beeston, Bob L. Harris, Russell A. Westman, N. M. Ghoniem, George Orient, W. G. Wolfer, Jackson H. DeVan, Peter F. Tortorelli
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 30-70
Technical Paper | Fusion Reactor | doi.org/10.13182/FST87-A25051
Articles are hosted by Taylor and Francis Online.
The current version of a reference design for a liquid-metal-cooled tandem mirror fusion breeder (fusion-fission hybrid reactor) is summarized. The design update incorporates the results of several recent studies that have attempted to resolve key technical issues that were associated with an earlier reference design completed in 1982. The issues addressed relate to the following areas of design and performance: nuclear performance, magnetohydrodynamic (MHD) pressure loading, beryllium multiplier lifetime, structural efficiency and lifetime, reactor safety, corrosion/mass transfer, and fusion breeder capital cost. The updated blanket design provides increased performance and reduced technological risk in comparison with earlier fission-suppressed hybrid blanket designs. Specifically, the blanket is expected to achieve a net fissile breeding ratio (per fusion) of 0.84, with a tritium breeding ratio of 1.06, and an average blanket energy multiplication of 2.44. It would operate at a relatively low neutron wall loading (1.7 MW/m2) with a low lithium coolant outlet temperature (425° C). These features provide for a very low beryllium swelling (∼0.3% ΔV/V) over the operating cycle. Similarly, the irradiation lifetime of the ferritic steel blanket structure is expected to exceed 10 calendar-yr (180 dpa). Despite the increased blanket energy multiplication and reduced lithium coolant outlet temperature, an acceptable first-wall MHD pressure of 1.7 MPa is estimated for the reference flow conditions. The updated design provides for a mobile, pebble-shaped, beryllium/thorium fuel element that can be loaded and discharged to a dump tank without removal of the blanket. The dump tank can be passively cooled to provide attractive reactor safety features. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment has been completed. Assuming that the fusion breeder uses the same 2600-MW(fusion) fusion plant design as was developed for the 1983 Mirror Advanced Reactor Study, the total plant cost and net-electrical production are expected to be $6.3 billion and 1990 MW(electric), respectively. In comparison with the MARS fusion-electric plant estimates, these are both ∼1.7 times higher. However, the fusion breeder also would produce 6660 kg/yr of 233U fuel for consumption in fission burner reactors. Specifically, the 6660 kg/yr would be sufficient to provide makeup for ∼25 light water reactors (LWRs) operating on a denatured thorium fuel cycle. Economics studies that reflect this high level of market leverage indicate that the reference fusion breeder would be economical if the price of mined uranium were to increase to only about $200/kg ($90/lb). In summary, an updated liquid-metal-cooled blanket design for a tandem mirror fusion breeder has been completed. Several prior feasibility issues have been addressed, and the design continues to promise attractive levels of performance as an economical producer of fissile fuel for many client LWRs.