ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
David B. Harris, Norman A. Kurnit, Dennis D. Lowenthal, Russell G. Berger, John M. Eggleston, James J. Ewing, Mark J. Kushner, Lester M. Waganer, David A. Bowers, David S. Zuckerman
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 705-731
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25044
Articles are hosted by Taylor and Francis Online.
The development of KrF lasers has proceeded from the small lasers invented in 1975 to the 10-kJ large amplifier module at Los Alamos National Laboratory. The future KrF laser-fusion drivers required for inertial confinement fusion (ICF) development and commercial applications, starting with single-main-amplifier laser systems in the 100- to 300-kJ range, through multimegajoule single-pulse target demonstration facilities, to repetitively pulsed drivers for electric power plants are examined. Two different types of KrF lasers are currently being analyzed as potential laser-fusion drivers: large electron-beam (e-beam)-pumped amplifiers using pure optical multiplexing for pulse compression and small e-beam sustained discharge lasers using a hybrid pulse compression technique. Both types of KrF lasers appear able to satisfy all of the requirements for commercial-applications ICF drivers, including cost, efficiency, pulse shaping, energy scaling, repetition rate, reliability, and target coupling. The KrF driver can effectively operate at efficiencies >10% and can contribute < 10 mill/kWh to the cost of electric power production, with the total estimated cost of electricity from either KrF laser system being comparable (25 to 50 mill/kWh, 1985 dollars) with the cost from other methods of electric power production.