ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Birchard L. Kortegaard
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 671-683
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25042
Articles are hosted by Taylor and Francis Online.
A control system is described that aligns the 96 beams of the Los Alamos National Laboratory KrF laser system to within a pointing accuracy of 5 µrad within 5 min and maintains the alignment in real time. This performance is made possible through a novel use of random noise. The 96 beams, together with optical benchmarks, are imaged on a single television (TV) camera. The pointing angles of those beams are estimated from the arithmetic means of the pixel coordinates within the beam images. The pixel intensities of each TV frame are mapped into a binary decision array based on whether or not the pixel intensity is above or below a threshold criterion. Existing, or introduced, random noise in the TV signal causes the contents of this array to vary from frame to frame, even when the actual beam is stationary. The beam positions are estimated from the pixel coordinates and their associated elements within this array. Finally, the beam angle estimates are updated from these position estimates, each TV frame, in combination with all previous estimates. This finds the contributions of the beam edges to the beam position by directly using pixels with intensities both above and below the beam threshold criteria, eliminating the need (possibly unrealizable) to do so by software interpolation algorithms. It does this very quickly, resulting in great data compression without use of computer time.