ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Louis A. Rosocha, Kenneth Bruce Riepi
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 576-611
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25037
Articles are hosted by Taylor and Francis Online.
Krypton-fluoride lasers have been shown to be promising candidates for inertial confinement fusion (ICF) drivers. These lasers can be effectively pumped with electrical discharges or energetic electron beams (e beams). With discharge pumping, the laser aperture is limited in size to a few centimetres (at atmospheric pressure) because of discharge instabilities that cause a homogeneous discharge to degenerate into arcs. Much larger aperture lasers can be pumped using relativistic e beams. At Los Alamos National Laboratory (LANL), we are constructing high-energy e-beam-driven KrF lasers with apertures as large as 1 m2 for the ICF program. In designing and building these lasers, a number of physics and engineering issues related to large area electron guns (e guns) must be addressed. Among these issues are the following: generation of the relativistic e beams, transport of the e beams into the laser gas, and design and construction of pulsed power devices for driving the e guns. Cold cathode e guns are found to be useful sources for driving these large volume KrF lasers. Presented are some brief background comments on cold-cathode sources. We will also discuss the cathode current emission mechanisms, basic beam transport considerations, pulsed power devices for powering these e guns, and measured e-gun performance. Particular emphasis is given to practical considerations related to the two main LANL KrF/ICF laser systems: the 10-kJ Aurora system and the 100-kJ power amplifier module design.