ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Robert H. Lehmberg, Julius Goldhar
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 532-541
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25033
Articles are hosted by Taylor and Francis Online.
A technique called echelon-free induced spatial incoherence is proposed for producing smooth, controllable target beam profiles with large KrF fusion lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile F(x) onto the target via the laser system, using partially coherent broadband light. The information needed to reproduce F(x) is transported through the system by a multitude of independent coherence zones, whose diameters are small compared to scalelengths of linear aberration and gain nonuniformities; as a result, F(x) remains relatively insensitive to these effects. This concept is closely related to the induced spatial incoherence technique used with glass lasers, except that it does not require echelons at the output of the system. An analysis is carried out to evaluate the perturbations of F(x) due to linear aberration, self-focusing, gain saturation, and diffraction. It shows that under conditions applicable to large KrF lasers, the perturbations will result in a small broadening and smoothing of F(x), whose functional form should be controllable to within a few percent. The ability of this technique to generate smooth focal profiles is demonstrated using a small KrF discharge oscillator-preamplifier system.