ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert H. Lehmberg, Julius Goldhar
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 532-541
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25033
Articles are hosted by Taylor and Francis Online.
A technique called echelon-free induced spatial incoherence is proposed for producing smooth, controllable target beam profiles with large KrF fusion lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile F(x) onto the target via the laser system, using partially coherent broadband light. The information needed to reproduce F(x) is transported through the system by a multitude of independent coherence zones, whose diameters are small compared to scalelengths of linear aberration and gain nonuniformities; as a result, F(x) remains relatively insensitive to these effects. This concept is closely related to the induced spatial incoherence technique used with glass lasers, except that it does not require echelons at the output of the system. An analysis is carried out to evaluate the perturbations of F(x) due to linear aberration, self-focusing, gain saturation, and diffraction. It shows that under conditions applicable to large KrF lasers, the perturbations will result in a small broadening and smoothing of F(x), whose functional form should be controllable to within a few percent. The ability of this technique to generate smooth focal profiles is demonstrated using a small KrF discharge oscillator-preamplifier system.