ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Reed J. Jensen
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 481-485
Overview | doi.org/10.13182/FST87-A25029
Articles are hosted by Taylor and Francis Online.
An overview of KrF laser issues for fusion in the laboratory environment is presented. In this fusion method, lasers are used to compress the deuteriumtritium fuel in the pellet to several thousand times its initial density. Krypton-fluoride lasers offer favorable wavelength, bandwidth, pulse-shaping, efficiency, and high-repetition rate properties for achieving fusion. Large-scale demonstration plants for fusion, however, rely on the improvement or resolution of significant issues: front-end capabilities, amplifiers and amplifier scaling, optical engineering for the ultraviolet, alignment systems, kinetics, beam quality, target coupling, cost, and overall system factors. We feel that KrF lasers may be able to meet the required inertial confinement fusion driver characteristics, driver-target coupling particularities, and capsule physics issues necessary to achieve the final conditions in the implosion that will produce net energy release from the fusion reaction.