ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Steve Fetter
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 400-415
Technical Paper | Safety/Enviromental Aspect | doi.org/10.13182/FST87-A25016
Articles are hosted by Taylor and Francis Online.
The hope that fusion reactors will have fewer radiological hazards than competing fission technologies is an important rationale for fusion research. Estimates of the radiological hazard due to reactor accidents, occupational exposures, and waste disposal of reference fusion and fission designs; the Mirror Advanced Reactor Study (MARS); and a liquid-metal fast breeder reactor (LMFBR) indicate that fusion may enjoy substantial quantitative advantages over fission but that such advantages are neither sure to be achieved nor necessarily sufficient for fusion to be perceived as qualitatively superior to fission. The possibility of achieving maximum reductions of hazard is explored by analyzing the effects of relatively minor modifications of the MARS design, using completely different structural or breeder/coolant materials, and changing the fusion fuel cycle. Minor modifications, such as elemental tailoring of structural and coolant materials, result in reductions of one to two orders of magnitude in each class of hazard. Using different reactor materials, such as vanadium alloy or high-purity silicon carbide blanket structure, can result in even greater reductions. Other combinations, such as a molybdenum alloy structure cooled by liquid lithium, can be as hazardous as an LMFBR. Using the only other promising fuel cycle, catalyzed deuterium-deuterium, accident hazards can be reduced one to two orders of magnitude and waste disposal hazards by a factor of 4.