ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Steve Fetter
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 400-415
Technical Paper | Safety/Enviromental Aspect | doi.org/10.13182/FST87-A25016
Articles are hosted by Taylor and Francis Online.
The hope that fusion reactors will have fewer radiological hazards than competing fission technologies is an important rationale for fusion research. Estimates of the radiological hazard due to reactor accidents, occupational exposures, and waste disposal of reference fusion and fission designs; the Mirror Advanced Reactor Study (MARS); and a liquid-metal fast breeder reactor (LMFBR) indicate that fusion may enjoy substantial quantitative advantages over fission but that such advantages are neither sure to be achieved nor necessarily sufficient for fusion to be perceived as qualitatively superior to fission. The possibility of achieving maximum reductions of hazard is explored by analyzing the effects of relatively minor modifications of the MARS design, using completely different structural or breeder/coolant materials, and changing the fusion fuel cycle. Minor modifications, such as elemental tailoring of structural and coolant materials, result in reductions of one to two orders of magnitude in each class of hazard. Using different reactor materials, such as vanadium alloy or high-purity silicon carbide blanket structure, can result in even greater reductions. Other combinations, such as a molybdenum alloy structure cooled by liquid lithium, can be as hazardous as an LMFBR. Using the only other promising fuel cycle, catalyzed deuterium-deuterium, accident hazards can be reduced one to two orders of magnitude and waste disposal hazards by a factor of 4.