ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Wennemar A. Brocke
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 311-316
Technical Paper | Plasma Engineering | doi.org/10.13182/FST87-A25011
Articles are hosted by Taylor and Francis Online.
In the case of a tokamak, plasma current and plasma equilibrium cannot be controlled independently of each other because the controlled systems involved are coupled. For a practical solution to the coupling problem, so-called decoupling controllers are suggested. To reduce the problem appreciably, a tokamak operation with controlled input currents rather than voltages is assumed. A decoupling controllers design procedure, based on a simple model of the coupled systems, is described, and a method is developed to identify unknown model parameters by evaluating measured time curves of the tokamak currents. Decoupling controllers are designed and successfully incorporated into the feedback loops of the Tokamak Experiment for Technically Oriented Research (TEXTOR) tokamak. Furthermore, the modeling and identification methods are also implemented for the Joint European Torus and the Axially Symmetric Divertor Experiment tokamak yielding results quite similar to those with TEXTOR so that just as useful decoupling controllers could be designed. These results encourage equipping the control systems oftokamaks other than TEXTOR with decoupling controllers and controlled current sources.