ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wennemar A. Brocke
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 311-316
Technical Paper | Plasma Engineering | doi.org/10.13182/FST87-A25011
Articles are hosted by Taylor and Francis Online.
In the case of a tokamak, plasma current and plasma equilibrium cannot be controlled independently of each other because the controlled systems involved are coupled. For a practical solution to the coupling problem, so-called decoupling controllers are suggested. To reduce the problem appreciably, a tokamak operation with controlled input currents rather than voltages is assumed. A decoupling controllers design procedure, based on a simple model of the coupled systems, is described, and a method is developed to identify unknown model parameters by evaluating measured time curves of the tokamak currents. Decoupling controllers are designed and successfully incorporated into the feedback loops of the Tokamak Experiment for Technically Oriented Research (TEXTOR) tokamak. Furthermore, the modeling and identification methods are also implemented for the Joint European Torus and the Axially Symmetric Divertor Experiment tokamak yielding results quite similar to those with TEXTOR so that just as useful decoupling controllers could be designed. These results encourage equipping the control systems oftokamaks other than TEXTOR with decoupling controllers and controlled current sources.