ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Michael Tendler, Daniel Heifetz
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 289-310
Overview | doi.org/10.13182/FST87-A25010
Articles are hosted by Taylor and Francis Online.
The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles that themselves are unaffected by magnetic fields. This transport affects the global power and particle balances infusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. The development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics is reviewed. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange (CX) corresponds to scattering and ionization to absorption. There are, however, some important qualitative differences between the two fields. Progress in the simulation of neutral kinetics depends on developing multidimensional analytic methods and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices that are directly related to neutral transport, such as Hα emission rates, plenum pressures, and CX emission spectra.