ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
E. Bertolini, P. L. Mondino, P. Noll
Fusion Science and Technology | Volume 11 | Number 1 | January 1987 | Pages 71-119
Technical Paper | JET Project | doi.org/10.13182/FST87-A25001
Articles are hosted by Taylor and Francis Online.
During a Joint European Torus pulse, the main tokamak loads [the toroidal coils, the transformer coils, the plasma equilibrium coils, and the additional heating devices (not described in this work)] require a total amount of energy of 10000 MJ and a peak power in excess of 1000 MW. The main power source is the U.K.'s Central Electricity Generating Boards' electric power system supplemented by two identical local motor flywheel generators. Since the tokamak loads require a direct-current (dc) supply, the alternating-current power from the energy sources is converted into dc by a combination of thyristor bridges (static units for the plasma position and shaping control, for the additional heating devices, and partially for the toroidal coils) and diode bridges, directly connected to the output of the two generators for the tokamak transformer coils and partially for the toroidal coils. The ohmic heating circuit modulates the flow of power from the flywheel generator to the transformer coils, and its duty is to establish and control the plasma current: It can deliver currents up to 80 kA and supply voltages up to 40 kV. Together with the static units (poloidal vertical, poloidal radial, and poloidal shaping magnetic field amplifiers) to control the plasma position and shape, it constitutes the poloidal circuit. The toroidal circuit is made up of two toroidal field (TF) static units and by the other flywheel generator conventor: It produces and controls the TF current during the pulse, with a maximum current of 67 kA and maximum voltage of 9 kV. The operation of the power supplies is coordinated by the control and data acquisition system (CODAS), which supplies approximate waveforms to each power supply controller, following a predetermined sequence of commands issued by the central timing system. The plasma position and current control is made up of a feedback system built in a conventional way, using magnetic probes and flux loops as sensors and analog electronics for measurement of position, comparitors, and controllers. The control voltages are transmitted to the power sources of the poloidal field to control plasma current, plasma position, and shape. Experimental evidence of the correct functioning of all power supplies and of their control is given by summarizing the key features of a 3.65-MA pulse.