ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Huguet, K. Dietz, J. L. Hemmerich, J. R. Last
Fusion Science and Technology | Volume 11 | Number 1 | January 1987 | Pages 43-70
Technical Paper | JET Project | doi.org/10.13182/FST87-A25000
Articles are hosted by Taylor and Francis Online.
The basic parameters of the Joint European Torus (JET) machine are presented together with the reasons that guided their choice. The design principles followed during the conceptual phase are also described. Existing technology and modular design were used as far as possible, with a view to reducing the technological risk and to make the machine easily maintained. For each of the main components of the machine, the design and manufacturing techniques are reviewed in some detail The vacuum vessel is an all-welded Inconel structure, bakable at 500°C, to achieve a base pressure in the range of 10-9 mbar at room temperature. The water-cooled magnet coils are made of copper with epoxy resin based insulation systems. The mechanical structure employed massive castings and stainless steel parts with high-precision machining. The assembly of the JET machine took 1 yr and used specially designed lifting and assembly jigs. The assembly and commissioning procedures are outlined for each component. The operating history of the vacuum vessel and associated systems, such as the pumping and bakeout systems, is presented. These systems have operated satisfactorily so far and have achieved their design specification in terms of the vacuum quality. The gas partial pressures in the vessel are typically 2 × 10-7 mbar for hydrogen and <10-9 mbar for impurities, at 230°C. The behavior of internal wall protection and limiters during the initial JET operation is described. Future plans are outlined that include graphite protection and a toroidal belt limiter. The advantages and drawbacks of wall conditioning techniques, such as pulse discharge cleaning, glow discharge cleaning, and carbonization are given. The JET toroidal field coils have been commissioned and used routinely up to their maximum design performances (i.e., 67 kA with a total energy dissipated per pulse of 5 GJ). Operation is monitored through an instrumentation system, which includes a short circuit detection system. The ohmic heating coils have also been commissioned to their maximum design performance. Some modification of these coils are envisaged in order to be able to extract the full flux swing during plasma operation. So far, the outer poloidal field coils have been used up to currents that are no more than one-third of their design values. This is because the plasmas achieved have a low β and do not require a large vertical field to maintain equilibrium.