ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
P. H. Rebut, B. E. Keen
Fusion Science and Technology | Volume 11 | Number 1 | January 1987 | Pages 13-42
Overview | JET Project | doi.org/10.13182/FST87-A24999
Articles are hosted by Taylor and Francis Online.
The background to the decision to build the Joint European Torus (JET) is described, and a brief introduction to the main aims, overall design philosophy, and the planned parameter range of the large tokamak device (major radius R = 2.96 m; horizontal and vertical minor radii a = 1.25 m and b = 2.10 m, respectively; plasma current Ip = 4.8 MA) is provided. JET is situated on the Culham Laboratory site, United Kingdom, and its main objective is to obtain and study plasmas in conditions and with dimensions approaching those needed in a fusion reactor. The main emphasis in the initial operation has been in the ohmic heating phase, in which results have covered a wide range of parameters: plasma currents Ip < 5 MA; toroidal magnetic fields BT = 1.3 to 3.4 T; elongation ratios b/a = 1.2 to 1.7; and safety factor values q = 2.2 to 12. Average electron densities ne = (1 to 4) × 1019 m-3, with high central electron temperatures (Te up to 5 keV) and ion temperatures (Ti up to 4 keV) have been achieved, although Zeff was in the range of 2.5 to 10. Energy confinement times (τE) of up to 0.8 s have been obtained. Some problems with metallic and low-Z impurities are noted, causing high radiation levels. Initial experiments, with ion cyclotron resonance frequency (ICRF) heating of hydrogen and 3He minorities in deuterium plasmas at megawatt levels, are reported. A discussion of certain limitations observed generally in tokamaks and how these might affect future developments of the JET program is presented. Planned future experiments on impurity control, additional heating (ICRF ≈ 15 MW, and neutral injection ≈ 10 MW), and preparations for tritium operation are also described.