ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Roberto Baratti, Anna Maria Polcaro, Pier Francesco Ricci, Antonio Viola, Giancarlo Pierini
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 266-274
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24978
Articles are hosted by Taylor and Francis Online.
A mathematical model has been developed to determine the amount of tritium that permeates the cooling circuit of a tritium breeding blanket containing the liquid eutectic alloy 17Li-83Pb. This model, which has been applied to phase 2A of the International Tokamak Reactor/Next European Torus project, is used to predict the effect of the operating conditions of the blanket, as well as those of a spray tower employed as a tritium recovery unit, and the kinetic parameters for the permeation and desorption processes. The results of this theoretical study indicate that the amount of permeated tritium proved to be not very different for the maximum [10.82 kPa1/2 · m3(mol · T)−1] and minimum [0.7 kPa1/2 · m3(mol · T)−1] values of Sievert's constant (Ks) existing in literature. This amount, moreover, can be reduced to 0.1 to 0.01 g/day of tritium by the presence of small oxide barriers (a permeation reduction factor of α ≅ 100) on the cooling tubes and by the easy operating conditions of the spray tower, which include a droplet diameter of 0.5 mm; a tritium pressure of 0.13 kPa at 673 K; and a residence time of 0.5 s.