ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Roberto Baratti, Anna Maria Polcaro, Pier Francesco Ricci, Antonio Viola, Giancarlo Pierini
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 266-274
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24978
Articles are hosted by Taylor and Francis Online.
A mathematical model has been developed to determine the amount of tritium that permeates the cooling circuit of a tritium breeding blanket containing the liquid eutectic alloy 17Li-83Pb. This model, which has been applied to phase 2A of the International Tokamak Reactor/Next European Torus project, is used to predict the effect of the operating conditions of the blanket, as well as those of a spray tower employed as a tritium recovery unit, and the kinetic parameters for the permeation and desorption processes. The results of this theoretical study indicate that the amount of permeated tritium proved to be not very different for the maximum [10.82 kPa1/2 · m3(mol · T)−1] and minimum [0.7 kPa1/2 · m3(mol · T)−1] values of Sievert's constant (Ks) existing in literature. This amount, moreover, can be reduced to 0.1 to 0.01 g/day of tritium by the presence of small oxide barriers (a permeation reduction factor of α ≅ 100) on the cooling tubes and by the easy operating conditions of the spray tower, which include a droplet diameter of 0.5 mm; a tritium pressure of 0.13 kPa at 673 K; and a residence time of 0.5 s.