ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wayne A. Houlberg, James T. Lacatski, Nermin A. Uckan
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 227-235
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24974
Articles are hosted by Taylor and Francis Online.
Confinement and engineering issues of a small (average minor radius ā ≃ 1 m) moderate-aspect-ratio torsatron reactor are evaluated. The Advanced Toroidal Facility design is used as a starting point because of its relatively low aspect ratio and high beta capabilities. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Some combination of lower aspect ratio coils, higher coil current density, thinner coils, and more effective shielding material under the coils should be incorporated into future designs to improve the feasibility of small torsatron reactor concepts. Current neoclassical confinement models for helically trapped particles show that a large radial electric field (in terms of the electric potential, eφ/T ≥ 3) is necessary to achieve ignition in a device of this size.