ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wayne A. Houlberg, James T. Lacatski, Nermin A. Uckan
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 227-235
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24974
Articles are hosted by Taylor and Francis Online.
Confinement and engineering issues of a small (average minor radius ā ≃ 1 m) moderate-aspect-ratio torsatron reactor are evaluated. The Advanced Toroidal Facility design is used as a starting point because of its relatively low aspect ratio and high beta capabilities. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Some combination of lower aspect ratio coils, higher coil current density, thinner coils, and more effective shielding material under the coils should be incorporated into future designs to improve the feasibility of small torsatron reactor concepts. Current neoclassical confinement models for helically trapped particles show that a large radial electric field (in terms of the electric potential, eφ/T ≥ 3) is necessary to achieve ignition in a device of this size.