ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. F. Lyon, B. A. Carreras, K. K. Chipley, M. J. Cole, J. H. Harris, T. C. Jernigan, R. L. Johnson, V. E. Lynch, B. E. Nelson, J. A. Rome, J. Sheffield, P. B. Thompson
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 179-226
Technical Paper | Experimental Devices | doi.org/10.13182/FST86-A24973
Articles are hosted by Taylor and Francis Online.
The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge National Laboratory, will be the world's largest stellarator experiment when it begins operation in early 1987. It will have a 2.1-m major radius and a 0.3-m average plasma radius, a magnetic field capability of up to 2 T for a 5-s pulse and up to 1 T steady state, and up to 5 MW of plasma heating. The ATF is designed to study a wide range of toroidal confinement issues, including confinement and stability of high-beta plasmas, low-collisionality transport, impurity behavior, magnetic configuration optimization, and steady-state operation. The ATF is the result of a study of a large number of possible coil configurations. It is an 1 = 2, 12-field-period torsatron with rotational transform between 0.3 and 1 and a plasma aspect ratio of R/ā = 7. This optimized helical field coil configuration permits direct access to a high-beta, second stability region in a flux-conserving manner, and volume-average beta values >8% may be achieved. The poloidal coil system allows study of a large variety of stellarator configurations, including those with a helical magnetic axis, and external control of the fundamental magnetic configuration parameters, including rotational transform, shear, magnetic well, and plasma shape. The ATF consists of two segmented, jointed helical field coils; three sets of poloidal field coils; a thin, helically contoured vacuum vessel; and a thick, segmented, toroidal shell support structure. Its important design features include extensive access for plasma heating and diagnostics, a high degree of construction accuracy, and parallel construction techniques. A description of the ATF torsatron, the physics and engineering reasons for the different design choices, and the expected capabilities of the device are presented.