ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. F. Lyon, B. A. Carreras, K. K. Chipley, M. J. Cole, J. H. Harris, T. C. Jernigan, R. L. Johnson, V. E. Lynch, B. E. Nelson, J. A. Rome, J. Sheffield, P. B. Thompson
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 179-226
Technical Paper | Experimental Devices | doi.org/10.13182/FST86-A24973
Articles are hosted by Taylor and Francis Online.
The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge National Laboratory, will be the world's largest stellarator experiment when it begins operation in early 1987. It will have a 2.1-m major radius and a 0.3-m average plasma radius, a magnetic field capability of up to 2 T for a 5-s pulse and up to 1 T steady state, and up to 5 MW of plasma heating. The ATF is designed to study a wide range of toroidal confinement issues, including confinement and stability of high-beta plasmas, low-collisionality transport, impurity behavior, magnetic configuration optimization, and steady-state operation. The ATF is the result of a study of a large number of possible coil configurations. It is an 1 = 2, 12-field-period torsatron with rotational transform between 0.3 and 1 and a plasma aspect ratio of R/ā = 7. This optimized helical field coil configuration permits direct access to a high-beta, second stability region in a flux-conserving manner, and volume-average beta values >8% may be achieved. The poloidal coil system allows study of a large variety of stellarator configurations, including those with a helical magnetic axis, and external control of the fundamental magnetic configuration parameters, including rotational transform, shear, magnetic well, and plasma shape. The ATF consists of two segmented, jointed helical field coils; three sets of poloidal field coils; a thin, helically contoured vacuum vessel; and a thick, segmented, toroidal shell support structure. Its important design features include extensive access for plasma heating and diagnostics, a high degree of construction accuracy, and parallel construction techniques. A description of the ATF torsatron, the physics and engineering reasons for the different design choices, and the expected capabilities of the device are presented.