ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Rene Raffray, Myron A. Hoffman
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1640-1645
Solid Breeder Blanket | doi.org/10.13182/FST86-A24967
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulic design study of the proposed ESPRESSO blanket for the Tandem Mirror Fusion Reactor is presented. Two solid breeder/multiplier configurations have been selected for the study: one with natural Li2O as solid breeder and no neutron multiplier and the other with 30% enriched gamma-LiAlO2 as solid breeder and Be as multiplier. A systematic procedure has been developed which effectively reduces the number of independent parameters to two, namely the neutron first wall loading and the main flow bulk temperature rise. Their effect on the maximum multiplier and breeder temperatures and on the pumping power ratio is investigated. Maximum allowable breeder and multiplier temperature constraints limit the design choice and a design point has been obtained for each case for a given maximum allowable pumping power ratio.