ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
George E. Orient, Nasr M. Ghoniem
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1617-1622
Solid Breeder Blanket | doi.org/10.13182/FST86-A24963
Articles are hosted by Taylor and Francis Online.
Mechanical interaction between the solid breeder material and its cladding during power cycles is an important consideration in the design of solid breeder blankets. The analysis presented in the paper gives a design tool for material choices and lifetime prediction for breeder pins. The UCLA solid breeder blanket design is evaluated, and operating conditions are suggested. The material model for the pellet includes linear thermoelastic behavior and swelling. The cladding is assumed to be thin and to exhibit swelling and creep. Two alternate breeder/cladding material pairs have been analyzed, a Li2O/2.25Cr-1Mo and a LiAlO2/9-C design. While high swelling excludes the Li2O/2.25Cr-1Mo design, it is found that in the LiAlO2/9-C case compatibility of thermal expansion between the breeder and the cladding as well as low swelling of the breeder result in less than 0.5% total plastic strain after one year of operation.