ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kosei Hara, Francis C. Moon
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1548-1553
Magnet Engineering | doi.org/10.13182/FST86-A24953
Articles are hosted by Taylor and Francis Online.
Superconducting magnets have complex structures. The coil pack is made up of alternate layers of superconductor and insulator, which form an extremely unisotropic composite structure. For example, the MFTF magnet design, the transverse stiffness is quite soft as compared to the circumferential stiffness [1]. In this study, cylindrically wound superconducting magnets were modeled by two-dimensional multi-rings connected by soft springs, and the internal vibration and buckling of the system were studied both experimentally and analytically. Since the linear elastic theory used in the previous studies [2,3] has failed to predict buckling and vibration of internal turns in the bending mode, elastic ring theory was used in this study. A model based on ring theory and magnetic stiffness was developed to explain experimental observations and showed a fair to good agreement between experimental and theoretical values of the buckling current.