ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sümer Şahin, Muhammed Abdul Raoof
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1315-1320
Fusion Application | doi.org/10.13182/FST86-A24912
Articles are hosted by Taylor and Francis Online.
A multidimensional neutronic analysis is carried out to determine the extent to which one dimensional neutron transport calculations can be applied to a fusion-fission (hybrid) experimental blanket in cylindrical geometry, driven by a moveable (D,T) target to simulate a 14 MeV neutron line source. Length of the target trajectory has been chosen to be L = 20 and 100 cm by a blanket height of H = 120 cm. The study has shown that, for the proposed blanket, one dimensional calculations will be satisfactory to interpret the experimental neutronic data over a blanket region of Z =1±15 to 25 cm for a trajectory length of L = 120 cm. Whereas these calculations would be applicable over a very narrow strip of the blanket around the Z = 0 plane for a trajectory length of L = 20 cm.