ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sümer Şahin, Muhammed Abdul Raoof
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1315-1320
Fusion Application | doi.org/10.13182/FST86-A24912
Articles are hosted by Taylor and Francis Online.
A multidimensional neutronic analysis is carried out to determine the extent to which one dimensional neutron transport calculations can be applied to a fusion-fission (hybrid) experimental blanket in cylindrical geometry, driven by a moveable (D,T) target to simulate a 14 MeV neutron line source. Length of the target trajectory has been chosen to be L = 20 and 100 cm by a blanket height of H = 120 cm. The study has shown that, for the proposed blanket, one dimensional calculations will be satisfactory to interpret the experimental neutronic data over a blanket region of Z =1±15 to 25 cm for a trajectory length of L = 120 cm. Whereas these calculations would be applicable over a very narrow strip of the blanket around the Z = 0 plane for a trajectory length of L = 20 cm.