ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Mark D. Hoover, Michael D. Allen, Richard B. Simpson, Hsu Chi Yeh
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1228-1233
Environment and Safety | doi.org/10.13182/FST86-A24898
Articles are hosted by Taylor and Francis Online.
A pulsed Nd:YAG laser is being used to aerosolize material from the surface of metal targets to simulate particles created in fusion energy systems. Targets in the form of rods up to 2-cm diameter can be attached to a screw mechanism that exposes a fresh surface for each laser pulse. Energies up to 20 J/pulse can be applied to the target, at pulse rates from a single shot to 300 Hz. Energy can be focused on an area with diameter less than 500 µm. Stainless steel and aluminum targets were used in a demonstration of system performance. The branched-chain ultrafine aggregate aerosols that were produced appeared to result from direct vaporization/condensation of material from the surface of the target located under the center of the laser beam, and from ejection of molten droplets from the target surface.