ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
T. Q. Hua, M. J. Knott, L. R. Turner, R. B. Wehrle
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1047-1052
Plasma Heating and System Dynamics | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24872
Articles are hosted by Taylor and Francis Online.
During plasma disruptions in a tokamak fusion reactor, eddy currents are induced in the limiters and other conducting structures surrounding the plasma. Interactions between these currents with the toroidal field causes deflection and stress in the structural components. The structural motion in the strong magnetic field induces additional eddy current opposing the initial eddy current and modifying subsequent structural dynamics. Therefore, the motion and current are coupled and must be solved simultaneously. The coupling between current and deflection in cantilevered beams was investigated experimentally. The beams provide a simple model for the limiter blade of a tokamak fusion reactor. Several test pieces and various magnetic field conditions were employed to study the extend of the coupling effect from weak to strong coupling. Experimental results were compared with analytical predictions.