ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
James K. Garner, Mohamed A. Abdou
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 837-847
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24842
Articles are hosted by Taylor and Francis Online.
The work reported here attempts to: 1) define limits for the design windows for liquid metal breeders and coolants with various structural materials in various tokamak fusion reactors, and 2) quantify the impact of uncertainties in these limits on the design window. MHD pressure drop and heat transfer models are developed and used to quantify the effects of varying several tokamak reactor and blanket design parameters and materials properties. Uncertainties in the present pressure drop equations and calculational methods are also considered. Calculations are used to evaluate the impact of the coolant inlet temperature on the thermal cycle efficiency. An evaluation of the limits of uncertainty gives results ranging from a promising blanket candidate to a severely restricted design window, that would probably exclude self-cooled liquid metal blankets for large tokamaks from consideration. The major uncertainties in the design window result from the current lack of understanding of pressure drop and heat transfer in strong magnetic fields.