ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Keiji Miyazaki, Shoji Inoue, Nobuo Yamaoka, Tomomitsu Horiba, Kazushige Yokomizo
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 830-836
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST10-830
Articles are hosted by Taylor and Francis Online.
The MHD pressure drop was measured by providing a lithium circulation loop of 40 lit/min and 0.3MPa head with a square test section of 2a=15.7mm × 2b=15.7mm or a rectangular one of 2a=26.8mm × 2b=ll.lmm inner cross-section made of tw=2.1mm thick 304-SS walls. The experiment covered ranges of B=0.2–1.5T (Ha=200–2100), U=0.2–4.0m/sec (Re=500–38000), and TLi=309–380°C. Theoretical prediction was made on an assumption of a uniform electric current density, neglecting the friction with walls. The MHD pressure gradient -dP/dz is given by -dP/dz = KpσfUB2 where Kp= C/(l+a/3b+C) and C=σwtw/σfa. The theory agreed well with the experimental data for both the square and rectangular test sections. Under the ununiform magnetic field of the exit, the pressure drop data agreed with an approximated prediction of Δ P= ∫KpσfUB2(z)dz.