ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. B. Reed, B. F. Picologlou, P. V. Dauzvardis, J. L. Bailey
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 813-821
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24839
Articles are hosted by Taylor and Francis Online.
Three instruments for measuring local velocities in liquid-metal MHD experiments for fusion blanket applications are being evaluated. The devices are used in room-temperature NaK experiments to measure three-dimensional flow field patterns anticipated in complex blanket geometries. Hot film anemometry, a standard technique in ordinary fluids, is being used, as well as two developmental devices. One is called the Liquid Metal Electromagnetic Velocity Instrument (LEVI), and performs essentially as a local DC electromagnetic flow meter. The third device, a Thermal Transient Anemometer (TTA) is a rugged, yet relatively simple device, which measures local velocity through the mechanism of convective heat transfer, in some ways similar to hot-film anemometry. Results are presented showing the kinds of data collected thus far with each instrument. Measurements include both local velocity measurements and some preliminary frequency analyses of the fluctuating signals from both a hot-film sensor and the LEVI device.