ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. C. Carroll, G. H. Miley
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 770-775
Impurity Control | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24833
Articles are hosted by Taylor and Francis Online.
A primarily analytical thermal analysis model is presented which allows for calculation of temperatures in fusion reactor first walls. The model utilizes input from plasma physics calculations coupling a 2-1/2 dimensional geometric analysis with a 1-dimensional heat conduction treatment to determine temperature profiles over the surface of and within the first wall. The results are primarily applicable to the steady-state operation of magnetic confinement devices such as tokamaks. Effects of wall geometry, toroidal curvature, and wall corrugation are considered in computing local power loadings from bremsstrahlung, cyclotron radiation, charged particles, and neutrons. Temperature solutions based on these loadings are developed by expanding into a MacLaurin series and utilizing the principle of superposition. A sequential calculation scheme is employed in lieu of traditional matrix methods in determining temperature distributions in composite walls. The model and corresponding solution methods are applied to three illustrative fusion reactor designs. Significant gains in accuracy are indicated over thermal analysis methods previously used.