ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Brookhaven experiment offers new way to study nucleus structure
Recently published research done at Brookhaven National Laboratory is offering a new, high-energy method for studying the structure of atomic nuclei. Scientists have been using the Solenoidal Tracker at the Relativistic Heavy Ion Collider (RHIC), known as STAR, to track the particles produced by ion collisions in the particle accelerator. Their research was published earlier this month in Nature.
D. W. Weissenburger, J. M. Bialek, G. J. Cargulia, M. Ulrickson, M. J. Knott, L. R. Turner, R. B. Wehrle
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 448-461
Technical Paper | Magnet System | doi.org/10.13182/FST86-A24785
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of conducting mechanical structures in high magnetic fields is complicated by the currents and forces induced by motion through the magnetic field. A series of experiments that were successfully conducted to investigate the coupling between induced currents and rigid body rotation in square loops and plates is presented. The experiments were performed with the Fusion Electromagnetic Induction Experiment facility at the Argonne National Laboratory. The observed data exhibited the magnetic damping and magnetic stiffness effects that arise in coupled systems and agreed very well with the predicted responses for both the loops and plates. The experimental arrangement consisted of a conducting test piece, rigidly mounted in a nonconducting fixture that provided a controlled stiffness against rotation. Electric currents were induced in the test loop/plate by pulsing a magnetic field oriented perpendicular to the test piece. This was done in the presence of a constant magnetic field oriented parallel to the loop/plate. The interaction of the induced currents and the background magnetic field produced a net torque about the axis of the test fixture. Measurements were made of the total current flowing around the test piece and the angular rotation versus time.