ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. W. Weissenburger, J. M. Bialek, G. J. Cargulia, M. Ulrickson, M. J. Knott, L. R. Turner, R. B. Wehrle
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 448-461
Technical Paper | Magnet System | doi.org/10.13182/FST86-A24785
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of conducting mechanical structures in high magnetic fields is complicated by the currents and forces induced by motion through the magnetic field. A series of experiments that were successfully conducted to investigate the coupling between induced currents and rigid body rotation in square loops and plates is presented. The experiments were performed with the Fusion Electromagnetic Induction Experiment facility at the Argonne National Laboratory. The observed data exhibited the magnetic damping and magnetic stiffness effects that arise in coupled systems and agreed very well with the predicted responses for both the loops and plates. The experimental arrangement consisted of a conducting test piece, rigidly mounted in a nonconducting fixture that provided a controlled stiffness against rotation. Electric currents were induced in the test loop/plate by pulsing a magnetic field oriented perpendicular to the test piece. This was done in the presence of a constant magnetic field oriented parallel to the loop/plate. The interaction of the induced currents and the background magnetic field produced a net torque about the axis of the test fixture. Measurements were made of the total current flowing around the test piece and the angular rotation versus time.