ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Thanh Q. Hua, Richard E. Nygren, Larry R. Turner
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 411-423
Technical Paper | Energy Storage, Switching, and Conversion | doi.org/10.13182/FST86-A24781
Articles are hosted by Taylor and Francis Online.
For a conducting material exposed to both a time-varying and a static magnetic field, such as a limiter blade in a tokamak, the induced eddy currents and the deflection arising from those eddy currents can be strongly coupled. The coupling effects reduce the currents and deflections markedly, sometimes an order of magnitude, from the values predicted if coupling is neglected. A series of experiments conceived by researchers at the Princeton Plasma Physics Laboratory to study current-deflection coupling were performed using the Fusion Electromagnetic Inductance Experiment (FELIX) facility at Argonne National Laboratory. Magnetic damping and magnetic stiffness resulting from the coupling are discussed, and analytical expressions for induced eddy currents and rigid body rotation in the FELIX plate experiment are compared with the experimental results. Predictions for the degree of coupling based on various parameters are made using the analytical model.