ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Lajos L. Lengyel
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 354-363
Technical Paper | Plasma Engineering | doi.org/10.13182/FST86-A24776
Articles are hosted by Taylor and Francis Online.
Results of ignition and continuous fueling scenario calculations are presented that were obtained in the framework of an assessment performed f or the Next European Torus based on International Tokamak Reactor (INTOR) parameters. The results obtained with pellet injection are compared with results corresponding to gas puffing. Pellet injection transports fresh fuel to the reaction zone on a time scale that is much shorter than the diffusion time characterizing the gas puffing method, thus making the method flexible and readily adaptable to different situations. In the case of ignition by pellet injection, it may become possible to have deep neutral beam penetration and maintain favorable heat deposition profiles up to the moment of density ramp-up, thus substantially relaxing beam output requirements. Three beam energies (D0particles) have been considered: 120, 100, and 80 keV. The importance of a proper match between beam characteristics and pellet parameters, specific for the transport scaling assumed (Alcator-INTOR), is shown. In the case of continuous fueling o f an already ignited discharge, the alpha power production notably increases if repetitive pellet injection, instead of gas puffing, is applied. The advantages of pellet injection are substantial, even at moderate pellet velocities.