ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
H. A. B. Bodin, R. A. Krakowski, S. Ortolani
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 307-353
Overview | doi.org/10.13182/FST86-A24775
Articles are hosted by Taylor and Francis Online.
In the reversed-field pinch (RFP), the plasma is confined in an axisymmetric toroidal configuration by a combination of toroidal (Bφ) and poloidal (Bθ) fields with Bθ ≫ Bφ outside the plasma and Bθ ≃ Bφ within the plasma. The essential property of the RFP equilibrium is that it is a near-minimum-energy relaxed state that the plasma finds naturally; the spontaneous generation of reversed toroidal field (dynamo process) is a consequence of this relaxation, and, if the plasma current is maintained, the field generation continues so that the configuration exists as a quasi steady state. Since such equilibria have little free energy to drive instabilities, the system has good stability properties, and, theoretically, confinement at high beta is possible; the plasma current can be sufficiently high to allow the possibility of plasma ignition in deuteriumtritium by ohmic heating alone. Experimentally, values of poloidal beta typically 10% or more are usually observed, and conditions have been found in which the temperature is found to scale approximately linearly with the plasma current up to 0.5 MA; maximum temperatures of the order of 0.5 keV have been observed. This temperature scaling corresponds to a current dependence of the energy confinement time of . Ohmically heated RFP reactors are discussed with emphasis on improved designs with increased power density up to values comparable to those in fission systems. Such compact reactors efficiently utilize normal copper coils and operate at relatively high wall loading. Compact reactors appear to offer significant advantages f or fusion power generation, and it is further shown that the RFP, because beta can be high and confinement is mainly by the poloidal field, offers advantages compared to other systems for compact reactor embodiments. These features also favor unique solutions to the impurity-control problem by the use of high-coverage pump limiters or toroidal magnetic-field divertors. One consequence of the relaxed-state equilibrium is the strong coupling between the poloidal and toroidal circuits through the plasma, offering the possibility of a low-frequency, low-amplitude oscillating-field current drive. The plasma-physics and plasma-engineering basis for the reactor is discussed, and a reactor design point established by extrapolation from the existing physics data base, along with a brief account of reactor optimizations and technological considerations, is given.