ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. A. B. Bodin, R. A. Krakowski, S. Ortolani
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 307-353
Overview | doi.org/10.13182/FST86-A24775
Articles are hosted by Taylor and Francis Online.
In the reversed-field pinch (RFP), the plasma is confined in an axisymmetric toroidal configuration by a combination of toroidal (Bφ) and poloidal (Bθ) fields with Bθ ≫ Bφ outside the plasma and Bθ ≃ Bφ within the plasma. The essential property of the RFP equilibrium is that it is a near-minimum-energy relaxed state that the plasma finds naturally; the spontaneous generation of reversed toroidal field (dynamo process) is a consequence of this relaxation, and, if the plasma current is maintained, the field generation continues so that the configuration exists as a quasi steady state. Since such equilibria have little free energy to drive instabilities, the system has good stability properties, and, theoretically, confinement at high beta is possible; the plasma current can be sufficiently high to allow the possibility of plasma ignition in deuteriumtritium by ohmic heating alone. Experimentally, values of poloidal beta typically 10% or more are usually observed, and conditions have been found in which the temperature is found to scale approximately linearly with the plasma current up to 0.5 MA; maximum temperatures of the order of 0.5 keV have been observed. This temperature scaling corresponds to a current dependence of the energy confinement time of . Ohmically heated RFP reactors are discussed with emphasis on improved designs with increased power density up to values comparable to those in fission systems. Such compact reactors efficiently utilize normal copper coils and operate at relatively high wall loading. Compact reactors appear to offer significant advantages f or fusion power generation, and it is further shown that the RFP, because beta can be high and confinement is mainly by the poloidal field, offers advantages compared to other systems for compact reactor embodiments. These features also favor unique solutions to the impurity-control problem by the use of high-coverage pump limiters or toroidal magnetic-field divertors. One consequence of the relaxed-state equilibrium is the strong coupling between the poloidal and toroidal circuits through the plasma, offering the possibility of a low-frequency, low-amplitude oscillating-field current drive. The plasma-physics and plasma-engineering basis for the reactor is discussed, and a reactor design point established by extrapolation from the existing physics data base, along with a brief account of reactor optimizations and technological considerations, is given.