ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Sümer Şahin, Tawfik A. Al-Kusayer, Muhammad Abdul Raoof
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 84-99
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24749
Articles are hosted by Taylor and Francis Online.
The AYMAN research project has been initiated to formulate the main structure of a prototypical experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. This geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect to neutronic considerations. In this project, the fusion chamber is simulated by a cavity with a diameter of ∼1.6 m inside a cylindrical blanket. Fusion neutrons of 14 MeV are produced by a movable target along the axis of the cylinder. The movable neutron source allows simulation of a line source for integral experiments, which is a result of the linear nature of the Boltzmann transport equation. The calculations have shown that a blanket with a 13-cm-thick natural UO2 fuel zone and a 17-cm-thick Li2O zone has a self-sustaining tritium breeding for the fusion driver. By an appropriate dispersion of the Li2O zone inside the graphite reflector, it became possible to decrease the neutron leakage out of the reflector by a factor of 2 to 3 in favor of tritium breeding performance.