ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Steven J. Piet
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 31-48
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST86-A24744
Articles are hosted by Taylor and Francis Online.
The potential value of probabilistic risk assessment (PRA) tools to fusion safety and economic issues is discussed. The main results and implications of a systematic examination of these general issues via PRA tools are reported. It is concluded that PRA methodology, tools, and thinking are useful to fusion research in the process of further improving fusion concepts and ideas. The MARS and STARFIRE designs are examined for possible answers to questions posed by using PRA tools. Several general magnetic-fusion design insights result from the study, including the following: 1. possible fault interactions must be minimized by decoupling fault conditions 2. the reliability of the vacuum boundary appears vital to maximizing facility availability and minimizing safety risk 3. economic analyses appear to be incomplete without consideration of potential availability loss from forced outages. A modification to PRA formalism called the “fault interaction matrix” is introduced. The fault interaction matrix contains information concerning what initial fault condition could lead to another fault condition, with what frequency. Thus, the fault interaction matrix represents a way to present and measure the degree to which a designer has decoupled possible fault conditions in his design. Such decoupling is crucial to enhancing fusion safety and facility availability.