ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Geoffrey W. Shuy, Ali E. Dabiri, Husam Gurol
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 459-475
Technical Paper | Fusion Reactors | doi.org/10.13182/FST86-A24732
Articles are hosted by Taylor and Francis Online.
A system of neutron-lean tandem mirror satellite reactors using the deuterium-3He (D-3He) fuel cycle has been assessed. The 3He fuel is produced via a breeder reactor, also based on the tandem mirror reactor (TMR) concept. The TMR concept was selected because, for the satellite reactors, the fusion energy is mostly in charged-particle form, so efficient, direct energy conversion can be used. For the breeder, the TMR gives a higher maximum achievable support ratio than other concepts give. The optimum satellite operating temperature was found to be ∼75 keV. The safety and cost of the satellite/breeder system were assessed. The D-3He fuel cycle becomes particularly attractive if the deuterium-deuterium (D-D) reaction can be suppressed by nuclear spin polarization. For perfect D-D reaction suppression, this would allow immediate hands-on maintainability of reactor components and allow for reduction in the magnet dimensions, since the shield would no longer be required. For no D-D reaction suppression, ∼3% of the fusion power will be in neutrons. This will then require the use of ∼40-cm shielding, along with activation concerns. Hands-on maintenance f or the satellite reactor is possible even without D-D reaction suppression, if low-activation materials are used. The radioactivity level of the 3He breeder is comparable to that of a deuterium-tritium reactor. The cost of electricity for the system, including the fuel costs, is estimated f or this system.