ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
The Working Group on KARIN-I, A. Mohri, Y. Fujii-E, K. Ikuta, H. Momota, H. Naitou, Y. Nomura, Y. Tomita, M. Ohnishi, K. Yoshikawa, S. Inoue, M. Nishikawa, S.-Inoue Itoh, K. Kitamura, S. Nagao, H. Nakashima, M. Iwamoto, Y. Gomay, M. Kumagai, Y. Kawakita, Y. Suzuki, K. Okamoto, H. Matsunaga, H. Yoshizawa
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 422-451
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24730
Articles are hosted by Taylor and Francis Online.
A 650-MW(electric) deuterium-tritium fusion reactor, KARIN-I, has ten moving plasma rings, which are produced by relativistic electron beam injection, heated by a major radius compression, and transported into a linear cylindrical burning section by annularly flowing liquid lithium outside the silicon carbide first wall The liquid lithium not only stabilizes the tilting motion of the rings but also works as the tritium breeder and the main coolant. Energy from the ash-accumulated rings is efficiently recovered at the exit during the major radius expansion. The linear alignment of reactor components ensures easy assembly and disassembly, and also provides for easy maintenance. These features of the reactor result in a net electric output power of 650 MW(electric) with overall plant efficiency of 30%.