ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. W. Kugel, H. P. Eubank, T. A. Kozub, M. D. Williams, M. Ulrickson
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 401-407
Technical Paper | Plasma Heating System | doi.org/10.13182/FST86-A24728
Articles are hosted by Taylor and Francis Online.
During 2 yr of experimental operations, the Poloidal Divertor Experiment (PDX) inner wall neutral beam graphite armor provided protection for perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma for special experiments, calibrations, and tests involving the optimization and development of the PDX neutral beam injection system. About 80 to 100 heating injections occurred per operating day, at a 360-s duty cycle, into plasmas of various densities, and typically ~5 to 50% of the injected neutral beam power was transmitted to the armor. More than 103 neutral beam pulses of 100- to 300-ms duration were injected in the absence of plasma at peak power densities of 1.5 to 3 kW/cm2, yielding peak surface temperatures of 950 to 1550°C. There was no significant impurity production attributable to beam heating of the armor, and no observed beam-induced, macroscopic surface damage. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.