ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Z. Youssef, M. A. Abdou
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 286-307
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24716
Articles are hosted by Taylor and Francis Online.
Estimates of the uncertainty ΔD in predicting the achievable tritium breeding ratio (TBR) due to the uncertainties in nuclear data base are presented for several fusion blanket concepts. Specifically, the impact of the current uncertainties in measuring basic nuclear data on the calculated TBR is analyzed and discussed for four leading blanket designs that utilize different breeding materials, namely, Li2O, 17Li-83Pb, LiAlO2, and Flibe. The impact on the TBR values of various evaluations for beryllium, which is employed as a multiplier in the latter two blankets, has been studied. Estimates for ΔD in other blanket concepts have also been assessed. Moreover, estimates have been made, based on previous studies, for the contribution to ΔD introduced by using neutron cross-section libraries that have different group structure and weighting spectra. Based on statistically incorporating the present cross-section uncertainties and their correlation in the analysis, the range of the uncertainty in TBR was found to be between 2 and 6% in all the concepts considered. The nonstatistical treatment for cross-section errors tends to give larger values for ΔD. The uncertainty in TBR introduced by misrepresenting the secondary energy-angle distribution of the 9Be(n,2n′) cross section ranges from ∼4% in the Flibe to ∼2% in the LiAlO2 blanket. Uncertainty up to ∼15% can be encountered in the TBR evaluation in thin blankets with natural 6Li enrichment if broad-group cross-section libraries are used. However, this uncertainty can be reduced upon using an appropriate weighting spectrum representative of the one found in these blankets type.