ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Adrian C. Smith, Jr., Gustav A. Carlson, William S. Neef, Jr., Clinton P. Ashworth, Kenneth E. Abreu, Hans H. Fleischmann, Kenneth R. Schultz, Clement P. C. Wong, Dilip K. Bhadra, R. Lewis Creedon, Edward T. Cheng, George R. Hopkins, William Grossmann, Jr., David M. Woodall, Terry Kammash
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 136-170
Technical Paper | doi.org/10.13182/FST86-A24708
Articles are hosted by Taylor and Francis Online.
A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (“compact toroids”). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three “burn stations.” Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuteriumthtium-3He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is ∼105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s. The fusion plasma rings are assumed to be of the field-reversed mirror type with some spheromak-like imbedded toroidal magnetic field. A magnetic/thermal energy ratio of one-third and an average 〈β〉 = 0.67 is presumed. Initial plasma ion (electron) temperatures are assumed to be 75 (50) keV, with an initial (final) plasma average radius of 39 (57) cm. The ion energy confinement is assumed to be classical and the electron energy confinement is one-tenth that of the ions. The rings are assumed to be tilt stabilized with ∼20% of the ring current carried by “fast,” axis-encircling particles. The first-wall and tritium breeding blanket designs make credible use of helium-cooling, silicon carbide, and Li2O to minimize structural radioactivity. “Hands-on” maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or a loss-of-flow accident. Helium removes heat from the first wall, blanket, and shield and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(electric).