ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ronald Kreutz
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2708-2720
Technical Paper | ICF Driver Technology | doi.org/10.13182/FST85-A24692
Articles are hosted by Taylor and Francis Online.
A summary of the investigations on pellet delivery is presented for the conceptual heavy-ion-beam-driven fusion reactor HIBALL. The results are given for the physical feasibility of pneumatic and electromagnetic pellet acceleration, and proposals are made for adequate pellet carriers. These can be utilized for any inertial confinement fusion reactor concept. A suitable value is derived for the pellet velocity by regarding the heating of the pellet by cavity radiation. A pellet velocity of 200 m/s is chosen. It is shown that for this pellet velocity the pellet tracking and synchronization of the pellet with the ion pulses are consistently feasible with respect to adequate pellet illumination by the ion beams. The proposed conceptual pellet injectors are designed for a 2-g projectile, composed of the pellet and a pellet carrier, and for an acceleration distance of 2 m. To achieve a pellet velocity of 200 m/s, a propellant gas pressure of 0.5 MPa is required for pneumatic acceleration. Using a magnetic linear accelerator with coils of 1-cm radius and 1-cm spacing, an effective magnetic induction on the axis of 1.2 T is necessary. An adequate pellet carrier is designed for each of the acceleration methods. This is a closed capsule for pneumatic acceleration and an open carrier with a ferromagnetic driving body for electromagnetic acceleration. The two injection methods are compared and evaluated with respect to the technical feasibility of the corresponding system components in order to give a concluding recommendation.