ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Wayne R. Meier, Edward C. Morse
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2665-2680
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24688
Articles are hosted by Taylor and Francis Online.
A method for optimizing the design of a fusion reactor blanket as a function of several design variables is described. Applications of the method are described elsewhere. The optimization problem consists of four key elements: a figure of merit (FOM) for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the FOM subject to the constraints. The FOM and constraints depend on the application and design objectives of the particular reactor concept. In general, they may be functions of the design variables and of the neutronic performance. A direct search, nonlinear simplex method is used to optimize the FOM subject to the constraints. The optimization algorithm requires the evaluation and comparison of the FOM at many different points in the search for the most attractive point. An evaluation of the neutronic performance is required each time a new point (i.e., a new set of design parameters) is chosen for comparison. The neutronic performance is evaluated by successive variational interpolation. With this approach, analytical expressions can be written for the neutronics performance as a function of the design variables based on only a limited number of reference point, neutron transport calculations. Hence, the FOM can be evaluated at any intermediate point without the need for additional transport calculations.