ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. A. Abdou, P. J. Gierszewski, M. S. Tillack, K. Taghavi, K. Kleefeldt, G. Bell, H. Madarame, Y. Oyama, D. H. Berwald, J. K. Garner, R. Whitley, J. Straalsund, R. Burke, J. Grover, E. Opperman, R. Puigh, J. W. Davis, G. D. Morgan, G. Deis, M. C. Billone, K. I. Thomassen, D. L. Jassby
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2595-2645
Overview | Blanket Engineering | doi.org/10.13182/FST85-A24685
Articles are hosted by Taylor and Francis Online.
The operating environment to be experienced by the nuclear components of a fusion reactor is unique and leads to a number of new phenomena and effects. New experimental knowledge is necessary to resolve many of fusion's remaining issues. Investigation of the required experiments reveals the importance of simulating multiple interactions among physical elements of components and combined effects of a number of operating environmental conditions. Some experiments require neutrons not only as a source of radiation damage effects but as a practical economical means for bulk heating and producing specific nuclear reactions. The evaluation of required facilities suggests important conclusions. Present fission reactors and accelerator-based neutron sources are useful and their use should be maximized worldwide, but they have serious limitations. Obtaining adequate data for fusion nuclear technology over the next 15 years requires a number of new nonneutron test facilities in addition to the use of fission reactors. Experiments in the fusion environment will then be required for integrated tests and concept verification. The key nuclear needs for a fusion facility are 20 MW of deuterium-tritium fusion neutron power over 10 m2 of experimental surface area with long (<1000 s) plasma burn and 2 to 10 MW · yr/m2 fluence capability. Fusion test devices with fusion power >100 MW are shown to be undesirable because of high cost and high risk. The analysis favors fusion devices that are able to operate at low total power and high power density. For fusion devices with large minimum power, e.g., conventional tokamaks, results indicate strong incentives for two separate test devices: one for plasma physics experiments and the other for fusion engineering research experiments.