ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. A. Abdou, P. J. Gierszewski, M. S. Tillack, K. Taghavi, K. Kleefeldt, G. Bell, H. Madarame, Y. Oyama, D. H. Berwald, J. K. Garner, R. Whitley, J. Straalsund, R. Burke, J. Grover, E. Opperman, R. Puigh, J. W. Davis, G. D. Morgan, G. Deis, M. C. Billone, K. I. Thomassen, D. L. Jassby
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2595-2645
Overview | Blanket Engineering | doi.org/10.13182/FST85-A24685
Articles are hosted by Taylor and Francis Online.
The operating environment to be experienced by the nuclear components of a fusion reactor is unique and leads to a number of new phenomena and effects. New experimental knowledge is necessary to resolve many of fusion's remaining issues. Investigation of the required experiments reveals the importance of simulating multiple interactions among physical elements of components and combined effects of a number of operating environmental conditions. Some experiments require neutrons not only as a source of radiation damage effects but as a practical economical means for bulk heating and producing specific nuclear reactions. The evaluation of required facilities suggests important conclusions. Present fission reactors and accelerator-based neutron sources are useful and their use should be maximized worldwide, but they have serious limitations. Obtaining adequate data for fusion nuclear technology over the next 15 years requires a number of new nonneutron test facilities in addition to the use of fission reactors. Experiments in the fusion environment will then be required for integrated tests and concept verification. The key nuclear needs for a fusion facility are 20 MW of deuterium-tritium fusion neutron power over 10 m2 of experimental surface area with long (<1000 s) plasma burn and 2 to 10 MW · yr/m2 fluence capability. Fusion test devices with fusion power >100 MW are shown to be undesirable because of high cost and high risk. The analysis favors fusion devices that are able to operate at low total power and high power density. For fusion devices with large minimum power, e.g., conventional tokamaks, results indicate strong incentives for two separate test devices: one for plasma physics experiments and the other for fusion engineering research experiments.