ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ralph W. Moir, Joseph D. Lee, R. Carroll Maninger, William S. Neef, Jr., Albert E. Sherwood, David H. Berwald, Jackson H. DeVan, Jungchung Jung
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 133-148
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24678
Articles are hosted by Taylor and Francis Online.
The concept described for the blanket surrounding a fusion reaction chamber is based on the use of molten fluoride salts to convert fusion energy into electricity and to breed the tritium fuel for the fusion power plant. Helium cools the first-wall and the blanket internals, which consist of a bed of beryllium balls in which neutrons are multiplied. The neutrons are used to breed tritium and also to release extra energy in exothermic nuclear reactions. Tritium is bred in the molten Flibe salt (LiF + BeF2) that flows slowly (∼0.1 m/s) in steel tubes and is removed from the salt and the helium by processing both streams. Because the solubility of tritium in Flibe salt is so low, there is a strong driving force for tritium permeation. A 10-µm-thick tungsten permeation barrier, deposited by chemical vapor deposition on the salt-carrying tubes, is proposed for preventing excessive tritium permeation into the helium stream. A 1-mm-thick aluminum jacket on the steel steam generator tubes is proposed to prevent excessive tritium permeation into the steam system. Flibe salt has safety advantages with respect to large accidents in that it will not react with air or water, in contrast to liquid lithium. For the first time, a method is proposed for recycling solid material in fusion blankets. To accomplish this, beryllium pebbles were chosen because the pebbles can be loaded into the blanket after manufacturing and, to accommodate radiation-induced swelling, can be moved periodically by flowing. Once the balls have reached their radiation damage lifetime, they can be removed from the blanket for refabrication and recycle.