ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Harold T. Peterson, Jr., David A. Baker
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2544-2550
Environmental Study | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST8-2544
Articles are hosted by Taylor and Francis Online.
Tritium is produced in light-water-cooled reactors as a product of ternary fission and by nuclear reactions with the coolant and with neutron-absorbing materials used for reactor control. Pressurized water reactors (PWRs) have greater amounts of tritium produced in or released into the coolant than boiling water reactors (BWRs). Consequently, tritium releases to the environment from PWRs [29 GBq/MW(e)-y (0.78 Ci/MW(e)-y)] are about 6½ times greater than from BWRs [4.4 GBq/MW(e)-y (0.12 Ci/MW(e)-y)]. Most of the tritium released from PWRs appears in the liquid effluent (about 85%), whereas 75% of the tritium released from BWRs is as airborne effluents. Radiation doses from these tritium releases are small; the average site collective (population) dose in 1981 was less than 0.002 person-sieverts per year (0.2 person-rem/ year). The total collective dose from all tritium releases was 0.08 person-sieverts (8 person-rem).