ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Stuecheli, R. Zmasek, M. Schaub
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2526-2531
Containment and Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24659
Articles are hosted by Taylor and Francis Online.
Aqueous and gaseous tritiated streams are to be processed in many Fusion, Fission and Isotope Separation Systems. A number of processes have been proposed. Some of them are well established, others are not yet industrially applied. From an engineering point of view these processes are evaluated for use in industrial plants with large scale separating requirements. Tritium processing experience from fission plants (mainly heavy water reactors) can be directly applied to Fusion Reactor Tritium systems. Sufficient experience for equipment design and material selection for industrial plants is already established.