ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. C. Bowman, Jr.a, R. H. Steinmeyer, L. K. Matson, A. Attalla, B. D. Craft
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2337-2343
Material Interaction | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24628
Articles are hosted by Taylor and Francis Online.
Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometrics of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.